

PROPOSED PLAN FOR CLEANING UP THE LOWER 8 MILES OF THE LOWER PASSAIC RIVER

May 21, 2014 Kearny, New Jersey New York-New Jersey Harbor Estuary

Diamond Alkali Superfund Site Cleanup

Contaminated with dioxins, PCBs, pesticides, metals, PAHs

Phased approach to clean up

- 1800s: Major center of Industrial Revolution
- Until 1970s, discharge of wastewaters into river was common practice
- Over 100 industrial facilities potentially responsible for sending contaminants into river
- Navigation channel built in late 1800, maintained until 1950s to 1983
- Industrial discharges & filling in of channel resulted in large inventory of contaminated sediment

History of Lower Passaic River

Why Clean Up the Lower 8 Miles?

- Contaminants bind to fine-grained sediment (i.e., silt)
 - Below River Mile 8.3: mostly silt with pockets of sand
 - Above River Mile 8.3: mostly sand with pockets of silt
 - 85-90% of fine-grained sediments are below River Mile 8.3
- For Lower Passaic River, majority of contamination is found in the lower 8 miles

5/20/2014

What We Know

- Lower Passaic River is tidal
- Surface of contaminated sediment suspends and moves with tides twice a day
 - Deeper sediments come up during storms
- In lower 8 miles, contamination is everywhere, bank to bank at levels far above clean-up goals
- Contamination levels have declined very little in past 15 years
 - This is true for sediment concentrations and
 - Fish and crab tissue concentrations
- Resuspension of sediment is the major ongoing source of contamination

Risks from Contaminated Sediment

Highlight 2-3: Sample Pictorial-Style Conceptual Site Model Focusing on Human and Ecological Threats

Risks related to eating fish/shellfish from the river are significant, requiring action to reduce these risks

Risks from exposure to contaminated sediment are significant for wildlife, requiring action to reduce these risks

Cleanup Options

- EPA evaluated 4 options:
 - 1) No Action
 - 2) Deep Dredging with Backfill
 - 3) Capping with Dredging for Flooding and Navigation
 - 4) Focused Dredging and Capping

- Active options have 3 disposal methods:
 - A. CAD (contained aquatic disposal) in Newark Bay
 - B. Off-Site Disposal
 - C. Local Decontamination & Beneficial Use

Bank-to-Bank Cleanup Options

2) Deep Dredging with Backfill:

- Remove all contaminated fine sediment in lower 8 miles
- Backfill with 2 feet of sand (no maintenance required)

3) Capping with Dredging for Flooding and Navigation:

- Engineered cap over lower 8 miles (with maintenance)
- Dredge enough contaminated fine sediment to:
 - Prevent additional flooding after cap is installed
 - Allow for commercial navigation in River Miles 0-2

5/20/2014

Partial Cleanup Option

4) Focused Capping with Dredging for Flooding:

- Dredge and Cap about one third of lower 8 miles
- Areas that send the most contaminants into the water

(1 of 3)

Disposal Method A: Contained Aquatic Disposal (CAD)

No on-land processing facility

(2 of 3)

Disposal Method B: Off-Site Disposal

Dredging

Transport

Courtesy of John Henningson; Henningson Environmental Services, Inc.

Dewatering

Loading onto

Courtesy of Stuyvesant Environmental Contracting, LLC (Boskalis-Dolman)

Off-site Disposal

(3 of 3)

Disposal Method C: Decontamination

Dredging

Transport

From Barge

Dewatering

Decontamination

Beneficial Use

Water Treatment Plant

Summary of Cleanup Options

			PROTECT	
Cleanup Option	Volume Dredged	Construction Time	Disposal Methods	Cost
1) No Action	N/A	N/A	None	\$0
2) Deep Dredging with Backfill	9.7 million cubic yards	11 years	A) CAD	\$1.3 Bil
			B) Off-Site Disposal	\$3.2 Bil
			C) Decon/Beneficial Use	\$2.6 Bil
3) Capping w/ Dredging for Flooding	4.3 million cubic yards	5 years	A) CAD	\$1.0 Bil
			B) Off-Site Disposal	\$1.7 Bil
&Navigation			C) Decon/Beneficial Use	\$1.6 Bil
4) Focused	0.9 million cubic yards	2 years	A) CAD	\$0.4 Bil
Capping w/			B) Off-Site Disposal	\$0.6 Bil
Dredging for Flooding			C) Decon/Beneficial Use	\$0.6 Bil

Evaluation of Cleanup Options: Criteria

- Overall protection of human health & the environment
- Compliance with federal & state standards
- Long-term effectiveness & permanence
- Reduction of toxicity, mobility, volume through treatment
- Short-term effectiveness
- Implementability
- Cost
- State Acceptance
- Community Acceptance

Proposed Cleanup Plan

Capping with Dredging for Flooding and Navigation & Off-Site Disposal

- Cap lower 8 miles bank-to-bank
 - Before installing cap, dredge to prevent addt'l flooding
- Dredge in lower 2.2 miles of navigation channel to various depths (backfill/cap after dredging)
- Send dredged materials off-site to incinerators & landfills
 - First barge to on-land processing facility & dewater.
- Fish/crab consumption advisories in place
- Restrictions on dredging/anchoring to protect cap

Key Questions

Why bank to bank?

- Contamination is everywhere at levels well above cleanup goal
- Bank-to-bank cleanup would provide opportunity to relax fish consumption advisories over time, while focused cleanup option (#4) would not

Why not take it all out?

- Taking it all out and capping some of it in the river are equally protective, but capping option has much less impact on community & environment
- Capping some of it is more easily implemented than taking it all out

(2 of 3)

Key Questions

CAD Site versus <u>Off-Site</u> Disposal

- Cap over CAD needs to be maintained in perpetuity; Off-Site maintenance done by permitted facilities.
- CAD does not treat any of the sediments; Off-Site would incinerate up to 10%.
- CAD has the least impact on local communities; Off-Site would need on-land processing facility.
- CAD has the most impact on Newark Bay; Off-Site would have no impact on Newark Bay.
- CAD and Off-Site both technically implementable; but CAD likely not administratively implementable.
- Cost for proposed cleanup plan: CAD = \$1.0 billion
 Off-Site = \$1.7 billion

(3 of 3)

Key Questions

Could the navigation channel be shallower?

- Preferred cleanup option includes dredging in the lower 2.2 miles of the navigation channel
- Future use depths are based on a U.S. Army Corps of Engineers survey of companies that use the channel
- Users often don't bring in fully-loaded ships and may wait until high tide to use the channel. Users restricted from using larger ships in the future.
- Dredging a channel adds substantially to the volume and cost of the proposed cleanup plan

ourPassaic.org

Send Comments to:

PassaicLower8MileComments.Region2@epa.gov

or

Alice Yeh Environmental Protection Agency 290 Broadway, 19th Floor New York, NY 10007-1866

Cleanup Options

- 1) No Action
- 2) Deep Dredging with Backfill
- 3) Capping with Dredging for Flooding and Navigation
- 4) Focused Capping with Dredging for Flooding

Disposal Methods

- A) CAD
- B) Off-Site Disposal
- C) Local Decontamination and Beneficial Use